A Double Bounded Version of Schur's Partition Theorem

نویسندگان

  • Krishnaswami Alladi
  • Alexander Berkovich
چکیده

Schur's partition theorem states that the number of partitions of n into distinct parts ≡ 1, 2 (mod 3) equals the number of partitions of n into parts which differ by 3, where the inequality is strict if a part is a multiple of 3. We establish a double bounded refined version of this theorem by imposing one bound on the parts ≡ 0, 1 (mod 3) and another on the parts ≡ 2(mod 3), and by keeping track of the number of parts in each of the residue classes (mod 3). Despite the long history of Schur's theorem, our result is new, and extends earlier work of Andrews, Alladi-Gordon and Bressoud. We give combinatorial and q-theoretic proofs of our result. The special case L=M leads to a representation of the generating function of the underlying partitions in terms of the q-trinomial coefficients extending a similar previous representation of Andrews.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Infinitary Polynomial van der Waerden Theorem

Our subject is infinitary Ramsey theory, specifically the existence of monochromatic structures of infinite cardinality for finite colorings of semigroups. Specifically, we shall prove an infinitary version of a recent polynomial extension of van der Waerden's theorem due to Bergelson and Leibman ([BL1]). Alternatively, this theorem may be viewed as a polynomial version of an infinitary van der...

متن کامل

A double bounded key identity for Göllnitz’s (BIG) partition theorem

Given integers i, j, k, L,M , we establish a new double bounded q−series identity from which the three parameter (i, j, k) key identity of Alladi-Andrews-Gordon for Göllnitz’s (big) theorem follows if L,M → ∞. When L = M , the identity yields a strong refinement of Göllnitz’s theorem with a bound on the parts given by L. This is the first time a bounded version of Göllnitz’s (big) theorem has b...

متن کامل

A FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM

In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.

متن کامل

An Involution Proof of the Alladi-Gordon Key Identity for Schur's Partition Theorem

The Alladi-Gordon identity ∑j k=0(q i−k+1; q)k [ j k ] q(i−k)(j−k) = 1 plays an important role for the Alladi-Gordon generalization of Schur’s partition theorem. By using Joichi-Stanton’s insertion algorithm, we present an overpartition interpretation for the Alladi-Gordon key identity. Based on this interpretation, we further obtain a combinatorial proof of the Alladi-Gordon key identity by es...

متن کامل

Double series representations for Schur's partition function and related identities

We prove new double summation hypergeometric q-series representations for several families of partitions, including those that appear in the famous product identities of Göllnitz, Gordon, and Schur. We give several different proofs for our results, using bijective partitions mappings and modular diagrams, the theory of q-difference equations and recurrences, and the theories of summation and tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2002